Stuart Golodetz
Education:
2006-2011
DPhil Computer Science, Spatial Reasoning Group





Passed Viva April 2011 (pending minor corrections)





New College, Oxford
2003-2006
First Class BA (Hons) (Oxon) in Computer Science 




New College, Oxford (Top First with 90% average)
1998-2003
A-Levels – Mathematics A, Further Mathematics A, Physics A, History A, General Studies A
AS-Levels – Economics A, French (Unit 2 - 108/120)
AO-Levels – Mathematics A


Merchant Taylors’ School, Northwood 

Employer:
Oxford University
Technical:
Main Languages: C++ (12 yrs), Java (4 yrs), Haskell, HTML & CSS, PHP, LaTeX
Main Libraries: OpenGL, SDL [Simple DirectMedia Layer], ITK [Insight Toolkit]
Other Libraries: DirectX (older versions), FMODEx
Databases: MySQL

Tools: Bison, Blender, CMake, Flex, g++, Subversion, Visual Studio

Academic Awards:

2009
Best Paper Award in Telemedicine and e-Health Section (HSI 2009, Catania, Sicily)

2008
Professor Yasuhiko Dote Award (Best workshop paper at CSTST 2008, Cergy-Pontoise, France)

2006
Honorary Senior Scholarship (New College, Oxford)

2006
Hoare Prize in Computer Science (Oxford University) (Highest mark in Final Honours School of Computer Science)

2004
Undergraduate Scholarship (New College, Oxford)

2004
Karen Thornton Memorial Prize (New College, Oxford) (Best college mathematics-related candidate in Moderations)

1998
Morley Scholarship (Merchant Taylors’ School, Northwood) (Entrance scholarship)

Competitions:
2003
British Informatics Olympiad (National Finalist)

2002
British Informatics Olympiad (National Finalist)

2001
British Informatics Olympiad (Distinction)

2000
British Informatics Olympiad (Merit)

Summary: 
DPhil Student at Oxford University Computing Laboratory with an enthusiastic desire to write computer games professionally. I'm looking for a job as a programmer to follow my DPhil (ideally starting August-September 2011).

I started writing games at school at the same time as some similarly-minded friends (age 14), and have been writing games and game-related programs as a hobby ever since. I retain interests in level design (I wrote my own 3D level editor) and modelling (I created the animated 3D models for my latest game), but I'm primarily a programmer (I've been writing code in one form or another since I was 9).
I am a student member of the Association of C and C++ Users (ACCU), and have written many articles for their journals.
Name:

Stuart Golodetz


Experience Whilst Studying:
2009-2010

D.Phil Project: millipede
millipede is a cross-platform (Windows [Vista]/Linux [Ubuntu]/Mac OS X [Snow Leopard]) 2D/3D medical image segmentation, 3D feature identification and 3D visualization system comprising 32,000+ lines of C++ code. I developed it as the final system for my D.Phil. It allows users to relatively automatically identify features (such as organs) in 3D computerised tomography (CT) images of the human abdomen and then visualize the results as a Phong-lit 3D mesh (the Phong lighting was accomplished using shaders written in GLSL). The application internally represents the CT images hierarchically using a tree-based data structure called a partition forest.

The user interface to millipede is implemented using the cross-platform wxWidgets toolkit, and consists of two separate windows. The segmentation window allows the partition forest to be edited intuitively using algorithms I devised as part of my research. It also allows features to be identified either automatically (using algorithms I devised) or manually. The visualization window uses OpenGL to render the results of identifying features as a 3D mesh, and allows the user to ‘fly around’ the organs to look at them from different angles.
The code for millipede makes heavy use of both the C++ Standard Library (particularly the part derived from the STL, e.g. the containers such as deque, list, map, set, vector, etc.) and Boost (particularly its Bind, Lexical Cast, Multi-Index, Smart Ptr, Thread and Tuple libraries). Ubiquitous use is made of Boost’s shared_ptr smart pointer for resource management. Boost.Thread is used to implement a multithreaded ‘job’ system to ensure a responsive GUI. Basic image processing (loading in medical images in DICOM format, filtering, etc.) is handled using the Insight Toolkit (ITK). Generation of project files on the various supported platforms is handled using the CMake cross-platform build framework. Most of the actual development was done using Visual C++ 2008 in Windows.
For the vast majority of its lifecycle, millipede was developed from scratch as an individual, greenfield project. However, at various times I was able to collaborate with a number of different undergraduate interns in the laboratory. This consisted both of algorithmic brainstorming and occasional pair programming. My supervisors and I also established collaborative links with several consultants at the Churchill Hospital in Oxford, and I was fortunate to be able to discuss my project with one of the Churchill’s consultant radiologists and work with her during the project’s validation stage.
2008-2010

D.Phil Project: centipede
centipede is a Windows-based 2D medical image segmentation, 2D feature identification and 3D visualization system comprising 26,000+ lines of C++ code (again, making heavy use of the C++ Standard Library and Boost). I developed it as the trial system for my D.Phil. For the most part, it shares a lot in common with millipede. The key differences are that unlike millipede, it only runs on Wndows (even though the code itself is portable), it only does 2D instead of 3D segmentation and feature identification, it is not multithreaded (making the interface less responsive) and it does not use the Insight Toolkit (I implemented a basic imaging toolkit from scratch as a learning exercise). It uses a standalone DICOM toolkit called DCMTK to load in the medical images.
2008


Side Project: hesperus (3D Game Engine/Demo)
hesperus is a cross-platform (currently Windows [Vista]/Linux [Ubuntu]) 3D game engine and demo comprising 36,000+ lines of C++ code. I developed it as a side project during my D.Phil. There are three separate aspects to it: the game engine itself, the level compilation toolchain (consisting of a sequence of tools that together compile worlds output by my Shipwreck world editor into game levels) and a small game demo. The aforementioned tools calculate visibility information and lighting for a world, produce a tree suitable for collision detection and automatically generate navigation meshes for non-player characters to walk around the level.
The game engine itself is data-driven and utilises a component-based object system: characters in the game are created from a set of individual components (e.g. health, inventory, movement) defined in an external text file, making for an extremely flexible system when compared to a hard-coded approach. I created the models for the characters using the open-source Blender modelling package, and these are handled in-game by a bone-based animation system. The engine also includes a robust physics subsystem, which handles physical simulation, collision detection and response for both characters and projectiles.
The code for hesperus makes heavy use of Boost (particularly its Bind, Dynamic Bitset, Filesystem, Lexical Cast, Optional, Smart Ptr and Tokenizer libraries). It uses the Simple DirectMedia Layer (SDL) library for window handling, OpenGL for rendering and FMODEx for audio. For AI scripting, it uses a freely available library called AngelScript, for which I wrote an extension to make it easier to use. I used Bison and Flex for some of the more sophisticated parsing required.
2007


Research Mini-Project: HairPen Bend (Long Hair Simulator)
HairPen Bend is a physical simulator for long hair (as opposed to fur), comprising between 5,000 and 10,000 lines of code. It was originally written in Java as a mini-project to get me into research in the first year of my D.Phil, but I subsequently also ported it to C++.
2005-2006

Individual Undergraduate Project: Shipwreck (3D World Editor)
Shipwreck is a fully-functional 3D world editor comprising 18,000+ lines of Java code. It allows users to create both indoor and outdoor 3D environments. Indoor worlds are created by placing primitives (blocks, cylinders, etc.) and combining them using constructive solid geometry (CSG) techniques (union, intersection, carve, hollow, split). Individual polygons can be textured using an intuitive interface. Outdoor worlds are created using B-spline-based 3D landscapes.
The user interface to Shipwreck is based on Valve’s popular Worldcraft (now Hammer) editor, as used for Half-Life. It consists of four sub-windows (top, side, front and 3D) so that the world can be edited from different angles. The GUI as a whole is implemented using Java’s AWT toolkit; the 3D sub-window is implemented using JOGL (an OpenGL toolkit for Java).
The code for Shipwreck uses many of the design patterns taught in our Object-Oriented Programming course (adapter, command, composite, factory, etc.) It is well-commented throughout and makes appropriate use of unit testing. The higher-level structure of the code was improved by making use of a structural analyser (IBM’s Structural Analysis for Java).
2005-2006

Voluntary Work: Amersham Museum
Implemented a touch-screen system in Java, enabling the museum to ex​hibit its photo collection in an interactive format. The system proved particularly popular with younger visitors.
2002-2004

Work Experience: Lionhead Studios, Guildford
· Implemented a phoneme-based text-to-speech system. This involved looking up words in a freely-available word-to-phoneme dictionary and playing sounds for the phonemes in sequence using FMOD. The individual phoneme sounds were carefully blended to make the output sound more natural.
· Implemented a net​worked framework for AI board-game playing in C++ (using WinSock).

· Helped test and evaluate a custom scripting language which was being developed for Project Dmitri.

2001


Work Experience: Codemasters, Leamington Spa
Helped to texture race tracks for their latest rally game and to quality-assurance test a boxing game they were about to publish.

Teaching (Oxford University Computing Laboratory)
2010-2011
Practical Administrator (Computer Animation)

2009-2010
Practical Demonstrator (Computer Animation)

2008-2009
Guest Lecturer and Practical Demonstrator (Computer Animation)

2007-2008
Guest Lecturer (Intelligent Systems I), Practical Demonstrator (Computer Graphics), Practical Administrator (Computer Animation), Tutor (Design and Analysis of Algorithms)

2006-2007
Practical Demonstrator (Computer Graphics, Concurrency, Functional Programming), Revision Tutor (Computer Graphics)

Publications:
· Stuart M Golodetz, Zipping and Unzipping: The Use of Image Partition Forests in the Analysis of Abdominal CT Scans. D.Phil thesis, Oxford University Computing Laboratory, April 2011. Passed (pending minor corrections).

· Stuart Golodetz. Simplifying the C++/AngelScript Binding Process. Overload, 95:19-23, February 2010.

· Stuart Golodetz, Irina Voiculescu, and Stephen Cameron. Automatic Spine Identification in Abdominal CT Slices using Image Partition Forests. In Proceedings of ISPA ’09, pages 117-122, Salzburg, Austria, September 2009.

· Stuart Golodetz. I Think I’ll Parse. Overload, 92:4-9, August 2009.

· Stuart Golodetz, Irina Voiculescu, and Stephen Cameron. Progress on a Decision-Support System for Abdominal CT Scans. In Proceedings of HSI’09, pages 116-119, Catania, Sicily, May 2009.

· Nilay Patel, Christopher Blick, Stuart Golodetz, Asif Muneer, Anil Vaidya, and David Cranston. Ex-vivo partial nephrectomy and renal autotransplantation for complex renal malignancies in the solitary kidney. Journal of Urology, 181(4):355, April 2009.

· Stuart Golodetz. If You Can’t See Me, I Can’t See You. Overload, 90:12-17, April 2009.

· Stuart Golodetz. Through the Looking Glass. Overload, 89:14-19, February 2009.

· Stuart Golodetz. The Legion’s Revolting! Overload, 88:24-28, December 2008.

· Stuart Golodetz. Beyond Programming: Non-Coding Challenges in a Research Setting. CVu, 20(5):6-7, November 2008.

· Stuart Golodetz, Irina Voiculescu, and Stephen Cameron. Region Analysis of Abdominal CT Scans using Image Partition Forests. In Proceedings of CSTST ’08, pages 432–437, Cergy-Pontoise, France, October 2008.

· Stuart Golodetz. Seeing Things Differently. Overload, 87:4-9, October 2008.

· Stuart Golodetz. Divide and Conquer: Partition Trees and Their Uses. Overload, 86:24-28, August 2008.

· Stuart Golodetz. RSA Made Simple. Overload, 85:16-18, June 2008.
· Stuart Golodetz. Watersheds and Waterfalls (Part 2). Overload, 84:4-8, April 2008.
· Stuart Golodetz. Watersheds and Waterfalls (Part 1). Overload, 83:4-9, February 2008.
· Stuart Golodetz. Functional Programming Using C++ Templates (Part 2). Overload, 82:13-16, December 2007.

· Stuart Golodetz. Functional Programming Using C++ Templates (Part 1). Overload, 81:9-13, October 2007.

· Stuart Golodetz, Irina Voiculescu, and Stephen Cameron. A Proposed Decision-Support System for (Renal) Cancer Imaging. In Proceedings of FBIT ’07, pages 361–366, Jeju City, South Korea, October 2007.

· Stuart M Golodetz. A 3D Map Editor. Undergraduate thesis, Oxford University Computing Laboratory, May 2006.

